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A heuristic analysis of the decay of a passive scalar field, subject to statistically steady random
advection, predicts two low-wave-number spectral scaling regimes analogous to the similarity states
previously identified by Chasnov [Phys. Fluids 6, 1036 (1994)]. Consequences of their predicted
coexistence in a single flow are examined. The analysis is limited to the idealized case of narrow band
advection. To complement the analysis, and to extend the predictions to physically more realistic
advection processes, advection diffusion is simulated using a one-dimensional stochastic model. An

experimental test of the predictions is proposed.

PACS number(s): 47.27.Gs, 05.40.+j, 02.50.—r

I. INTRODUCTION

Chasnov [1] recently performed a comprehensive study
of the similarity states of passive scalar transport in de-
caying turbulence, complementing and in some respects
clarifying previous work. Earlier work on this problem
is summarized by Hinze [2]. Hinze notes that analogous
questions for the case of statistically steady turbulence
can likewise be posed, but are perhaps of less practical
interest.

We propose that the statistically steady case is of in-
terest for several reasons. First, there are physical man-
ifestations of statistically steady turbulence that are of
technological as well as fundamental interest. Examples
include turbulence driven by buoyancy, free shear, and
wall boundary layers. A particular example is consid-
ered in the latter portion of this paper, and experimen-
tally testable predictions are obtained. Second, advection
diffusion subject to statistically steady forcing is increas-
ingly recognized as an important paradigm of turbulent
mixing.

Many recent analytical and numerical studies of the
steady-forcing case [3-8] involve the imposition of scalar
boundary conditions that induce statistically steady
scalar fluctuations. The main focus of these studies
has been the interpretation of long-tailed scalar prob-
ability density functions (PDF’s) observed experimen-
tally [9-13]. In other studies of the steady-forcing case
[6,14-16], decaying scalar fields are considered. Numeri-
cal simulations of this configuration typically involve do-
mains of size comparable to the advection length scale,
with periodic boundary conditions imposed. Again, the
main focus has been the scalar PDF and related statis-
tics, with reference to their evolution from a given initial
state to an asymptotic similarity state.

The present focus is on low-wave-number spectral
regimes of the scalar field, but results obtained here have
some bearing on scalar PDF evolution. It is noted that
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the domain size relative to the advection length scale
can affect the final similarity state. In particular, the
low-wave-number dynamics of scalar decay in the limit
of large domain size result in an asymptotically Gauss-
ian PDF. Previously reported non-Gaussian asymptotic
states of decaying scalar fields are manifestations of finite
domain size. This observation does not detract from the
validity or the physical relevance of the previous results
because the finite-domain case is more common in phys-
ical applications than the case of an effectively infinite
domain. The point is simply that some interesting non-
Gaussian effects go away when very large domains are
considered.

Low-wave-number properties of advection diffusion are
studied here by heuristic analysis of the d-dimensional
advection-diffusion equation, supported and extended
by numerical simulations based on a one-dimensional
stochastic model. The heuristic analysis, limited to the
idealized case of narrow band advection, is presented in
Sec. II. In Sec. III, it is shown that the linear-eddy model,
a one-dimensional stochastic process used previously to
investigate diverse properties of advection-diffusion pro-
cesses [4,5,15,16], reproduces the predicted spectral scal-
ings. On the basis of this result and mechanistic consid-
erations, it is proposed that the linear-eddy model can
plausibly be extended to cases of physical interest that
are not amenable to heuristic analysis. Simulations of
one such case are presented in Sec. IV. An experimental
test of predicted behaviors is proposed in Sec. V.

II. NARROW BAND ADVECTION: ANALYSIS

Consider a scalar field ¢(x,t) that evolves according to
the d-dimensional advection-diffusion equation

é¢+v-Ve=krVic, (1)
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where k is the molecular diffusivity and v(x,t) is
a divergence-free, homogeneous, isotropic, statistically
steady advection process. It is assumed that the power
spectrum of v is concentrated in a narrow range about a
characteristic wave number, the inverse of the advection
length scale &,.

More generally, a broad high-wave-number spectral tail
is permitted, but not a low-wave-number tail. The latter
restriction precludes the case of high-Reynolds-number
Navier-Stokes turbulence, which develops spectral tails
on both sides of the forcing wave number [17]. The pos-
tulated flow properties might correspond, e.g., to viscous
flow with statistically steady mechanical forcing. The
low-wave-number restriction is relaxed in computations
discussed in Sec. IV.

It is likewise assumed that the low-wave-number con-
tent of the initial scalar field ¢(x,0) is negligible. Com-
putations discussed in Secs. III and IV involve spatially
periodic ¢(x, 0).

The advection process is characterized by £, and by a
correlation time 7, or, alternatively, by a velocity ampli-
tude v’ ~ £,/7, and an effective diffusivity k. ~ £2/7,.
Henceforth, length and time are scaled by &, and 7, so v’
and k. become nondimensional. Molecular-diffusive ef-
fects are parametrized by the Péclet number Pe = k. /k.
Low-wave-number properties considered here are inde-
pendent of Pe for Pe>> 1, reflecting the well-known irrele-
vance of molecular diffusion at length scales for which the
characteristic molecular diffusion time greatly exceeds
the characteristic advection time. In effect, scalar spec-
tral intensity is transported in wave-number space by the
advection process, with the dissipative action of molec-
ular diffusion acting only at high wave numbers (corre-
sponding to the “Batchelor scale” [17]).

Low-wave-number spectral properties of Eq. (1) are
analyzed heuristically. Omitting numerical factors of or-
der unity, the spatial Fourier transform of Eq. (1) is

a(k) — i/a(k’)k’ -b(k — k') dk’ = —kk%a(k), (2)

where a(k) = [c(x)exp(ik - x)d?z and b(k) =
J v(x) exp(ik - x) d®z. Though not shown explicitly, a,
b, and c are functions of time t.

A small-k approximation is obtained by Taylor-
expanding b(k — k’) for small k, namely, bk — k') =
b(—k') + (k - Vi)b(—=Kk') + -+, where Vi b(—k’) is the
k-space gradient of b evaluated at —k’.

For k = 0, the integral in Eq. (2) reduces to the spatial
integral of v - Ve, which is zero because c is conserved.
To lowest nonvanishing order in k <« 1, Eq. (2) gives

a(k) —i/a(k’)k' - (k- Vi)b(=K') d%' = —kkZa(k).

(3)

Because k does not affect low-wave-number properties
for Pe>> 1, it suffices to consider the pure advection prob-
lem, corresponding to x = 0. Henceforth, vector notation
is dropped because only magnitudes of quantities are con-
sidered. With these simplifications, Eq. (3) is of the form

a(k) = kn, where 1) is a random process. This implies lin-
ear dependence of a on k for £k < 1. The d-dimensional
scalar spectrum scales with Fourier amplitude a accord-
ing to Egq(k) ~ k% 'a?(k), because Ey(k) is obtained
by integrating |a?(k)| over a (d — 1)-dimensional shell in
wave-number space [17]. Therefore Eq4(k) ~ g(t)k?*! for
low k, where g(t) is a time-dependent coefficient.

Invoking narrow band advection, b is non-negligible
only for k' of order unity, so 7 is proportional to a(1).
It is shown below that a(1) decays as t~(¢+4)/4  causing
the growth rate of a(k), governed by a(k) = kn, to de-
crease with time. Accordingly, g(¢) ceases to grow after
an initial transient. Its maximum value is bounded as a
consequence of the following property. Advection by a
divergence-free flow conserves all single-point statistical
properties of the scalar field, in particular the scalar vari-
ance 2. The relation ¢’ ~ [ E4(k) dk [usually taken to
be an equality by choice of the normalization of E4(k)
[2]] therefore implies a bound on the low-wave-number
portion of E4(k).

In fact, this relation implies the eventual decay of the
low-wave-number spectrum because the advection pro-
cess transfers scalar variance to high wave numbers. The
transfer mechanism is the cascade of scalar spectral in-
tensity induced by the compressive-strain effect of the
advection process. This mechanism underlies the classi-
cal k™! scaling of E4(k) at wave numbers higher than the
wave-number range of the advection process [17].

No rigorous procedure is known for analyzing this
mechanism based on Eq. (1) or (2). Here a heuristic
approach is adopted, based on the eddy-diffusivity pic-
ture [17]. It is postulated that the effect of the cascade
on scalar evolution in the wave-number range k£ < 1 can
be represented by replacing k by k. in Eq. (1). The ad-
vective term on the left-hand side is retained to represent
mechanisms other than the scalar cascade.

Therefore consider Eq. (3) with & replaced by k.. Tak-
ing a(k,to) ~ k, where t¢ is the time at which the initial
transient buildup of a(k) is completed, this implies sub-
sequent decay of the form a(k,t) ~ kexp(—kek?t) and
thus

Eq4(k) ~ k%! exp(—2k.k*t). (4)

2 gd+2

Integration of Eq. (4) over k gives ¢
t=(4+2)/2 where k = (ket)"/2. The exponential cut-
off cannot extend to indefinitely high k, for if it did, ¢2
would vanish rather than remaining constant at large t¢.
The t~(4+2)/2 decay applies only to the contribution of
wave numbers k < k to the scalar variance. Therefore
consider k > k. A

The wave-number range k < k < 1 is analyzed by
first considering the time dependence of a(1). The mech-
anism that generates scalar fluctuations at £k = 1, not
reflected in the development thus far, is the perturbation
of low-wave-number scalar fluctuations by the advection
process. In effect, low-wave-number scalar fluctuations
play a role akin to an imposed scalar gradient. Accord-
ingly, a(1) is proportional to the gradient magnitude [18],
i.e., the product of the characteristic amplitude ¢’ of low-
wave-number fluctuations (which decreases as t—(d+2)/4
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as noted) and the characteristic wave number k (which
decreases as t~1/2). Therefore a(1) ~ t~(4+4)/4  giving

Ed(l) ~ t—(d+4)/2’ (5)

a slower time decay than indicated by Eq. (4).

The scalar spectrum for ¥ < k < 1 is analyzed by
expressing Eq. (3) (again, with k replaced by k.) in the
form

a(k) = —kek?a(k) + kn, (6)

where 7 is a noise of amplitude a(1) and correlation time
unity (in scaled units). Because a(1) decays as a power
of t, its characteristic time scale is the elapsed time t.
Therefore the secular variation of 7 is slow enough so
that a quasisteady picture can be adopted for the time
regime t 3> 1. Namely, Eq. (6) is regarded as a linear
Langevin equation [19], giving a?(k) ~ a2(1), i.e., a?(k)
independent of k. As earlier, E4(k) ~ k% 'a?(k), giving

Eq(k) ~ k41~ (44972 (7)

in this “equilibrium” wave-number range, so named be-
cause spectral amplitudes are determined by the balance
of fluctuation and dissipation processes in Eq. (6).

The analysis motivates the following intuitive picture
of the low-wave-number evolution of the power spectrum
of a randomly advected scalar. Assuming a narrow band
initial scalar spectrum, random advection induces a k%*1
low-wave-number spectral tail whose transient growth to
a limiting amplitude occurs on the advection time scale
Ty. For given k <« 1/§,, subsequent exponential decay of
the spectrum occurs on the time scale s 'k~2 governing
the cascade of scalar variance to higher wave numbers.
Crossover to a regime of slower time decay is brought
about by the direct transfer of scalar variance from low k
to k of order 1/£,. This transferred scalar variance is fed
back to low wave numbers, balancing the scalar cascade
so as to establish a wave-number range with power-law
time decay.

We note an analogy between the inferred spectral
scalings Egs. (4) and (7) and similarity states identi-
fied in Chasnov’s [1] analysis of advection diffusion in
three-dimensional decaying turbulence. In the low-wave-
number limit, Chasnov obtained E3(k) ~ k* for a spa-
tially homogeneous scalar field and E3(k) ~ k2 for the
case of an imposed scalar gradient. The powers of k cor-
respond to those of Eqs. (4) and (7), respectively, for
d = 3. Moreover, a mechanistic connection can be iden-
tified.

The initial transient buildup of a(k) leading to the
power-law scaling in Eq. (4) is governed by a time scale
to that corresponds to the advection time scale 7,,. The
decay of turbulence is governed by the same time scale,
so the transient buildup in decaying turbulence differs
from the case analyzed here only by an order-unity fac-
tor reflecting the decay of turbulence intensity over the
time interval ;5. Therefore, the initial development of the
scaling in Eq. (4) is not fundamentally affected by the
occurrence or nonoccurrence of turbulence decay.
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As reflected by the nomenclature we have adopted, the
wave-number range governed by Eq. (7) equilibrates on
a faster time scale than the wave-number range governed
by k4t! scaling. In effect, the latter range is a low-wave-
number reservoir of scalar variance. This reservoir acts
as an imposed scalar gradient driving the scalar fluctua-
tions at higher wave numbers. Hence we have the mecha-
nistic equivalence to the imposed-gradient configuration
analyzed by Chasnov.

The distinct feature in the present situation is the slow
transient induced by statistically steady advection, re-
flected by the time-dependent term in Eq. (4) and the
consequent time dependence of Eq. (7). Curiously, main-
tenance of the advection induces transient scalar decay,
while decay of advection leads, as Chasnov shows, to an
invariant final state of the scalar. The scalar decay in
the present situation leads to the coexistence of two low-
wave-number scaling regimes in a single configuration.

III. NARROW BAND ADVECTION:
STOCHASTIC SIMULATION

The heuristic analysis presented here does not estab-
lish the picture inferred in Sec. II as the uniquely plausi-
ble low-wave-number scenario. We seek further support
for this picture by performing numerical simulations of
advection diffusion.

Multidimensional numerical simulations with sufficient
dynamic range to resolve the advection process and cap-
ture the low-wave-number scalings would be very costly.
Here the linear-eddy model is used to simulate stochas-
tic advection in one spatial dimension. The simulation
method, described in detail elsewhere [4,5], involves de-
terministic numerical solution of the diffusion equation
% = n%‘é on a linear domain, punctuated by a random
sequence of instantaneous events that advect the scalar
field. Each event involves spatial rearrangement of a ran-
domly selected interval of the domain. Two alternative
rearrangement rules, “inversion” (a spatial flip) and the
“triplet map” (a one-dimensional analog of the baker’s
map) are employed. (These rules are measure preserv-
ing, i.e., they maintain the same scalar conservation laws
as divergence-free flow.) The interval size either is fixed
or is randomly selected for each event based on a speci-
fied size-versus-frequency distribution. The initial scalar
field is periodic, with either sinusoidal or telegraphic spa-
tial dependence. Low-wave-number properties are found
to be insensitive to these and other variations.

As illustrated in Fig. 1, computed spectra highlight
the remarkable mechanistic intricacy of low-wave-number
scalar evolution. In Fig. 2, spectra for the illustrative
case are plotted in rescaled coordinates to demonstrate
their collapse with respect to the scalings derived in Sec.
II.

Unlike low-wave-number properties, high-wave-num-
ber properties are sensitive to details of the advection
process. For example, the oscillations seen at high k are
specific to the rearrangement rule employed in the com-
putation. The triplet map involves threefold compression
of the scalar field in a randomly selected interval, re-
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FIG. 1. Time evolution of the scalar power spectrum E(k)
obtained by linear-eddy simulation using the triplet-map re-
arrangement rule with fixed interval size L = 2w, correspond-
ing to wave number k = 2n/L = 1. For the case shown,
Pe=210 and the initial scalar field is sinusoidal with period 27
and scalar variance —% Curves (top to bottom) correspond to
t = 5.77, 28.8, and 57.7. Here t is expressed in units of L?/k.,
where k. is the effective diffusivity of the advection process.
A line segment of slope k? indicates the low-wave-number
scaling.

E(k) t5/2
5

0.1 1 10 100

FIG. 2. Spectra of Fig. 1, replotted as t/2E(k) versus
k/ k to demonstrate the time scalings of the equilibrium range
amplitude, given by Eq. (4), and the low-wave-number cutoff
k =t/ (based on the time units of Fig. 1).
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placement of the scalar field within the interval by three
copies of the compressed image, and inversion of the cen-
tral image. (See Ref. [4] for an illustration.) Because
the first and last images are identical, the spatial auto-
correlation exhibits a bump at their separation, % of the
interval size, resulting in oscillatory modulation of the
power spectrum. Other rearrangement rules not subject
to this artifact yield smooth spectra.

Model-specific high-k properties do not impact the un-
derlying scalings at low or high k. For example, the
high-k spectrum for the case of Figs. 1 and 2 but with
Pe=21000 (not shown) likewise oscillates, but the enve-
lope of the oscillations exhibits the k~! scaling govern-
ing the viscous-convective regime [17], which extends in
this instance from & = 1 to the Batchelor wave num-
ber. (The k~! scaling is not seen in Fig. 1 due to
the limited wave-number range of the viscous-convective
regime for this case.) Though the model represents ad-
vection as an event sequence rather than a continuum
flow, the compression mechanism embodied in the triplet
map can be viewed as a mechanistically valid analog of
fluid-mechanical compressive strain. The extent and lim-
its of validity of this analogy are considered in detail else-
where [4].

As an aside, it is noted that the scalar PDF during the
decay period is consistently found to be Gaussian. A de-
caying scalar field subject to statistically steady random
advection exhibits Gaussian statistics because the domi-
nant fluctuations at large ¢ are at low wave numbers and
therefore are the result of many independent motions in
a spatial domain that is large compared to the advec-
tion length scale. PDF’s obtained by high-pass filtering
the simulated scalar field are found to be long tailed.
This is because the high-pass-filtered scalar field is effec-
tively subject to an imposed scalar gradient correspond-
ing to the dominant low-wave-number modes. It has
been shown that the linear-eddy model yields long-tailed
scalar PDF’s for the imposed-scalar-gradient configura-
tion [4,5]. The mechanism is somewhat different from
the mechanism responsible for long-tailed scalar PDF’s in
continuum flow subject to an imposed scalar gradient [8].
A recently proposed general classification of PDF shapes
for diverse nonequilibrium statistical processes provides
a framework for interpreting these observations [20].

IV. TURBULENT ADVECTION

The assumption that advection is a narrow band pro-
cess is unrealistic because momentum is subject to trans-
port processes analogous to those transporting the scalar.
Consequently, the flow field tends to develop a low-wave-
number spectral tail by much the same mechanism as
for the passive scalar. Indeed, studies of this low-wave-
number flow property predate the study of the analogous
scalar property; k* low-wave-number scaling of the tur-
bulence energy spectrum is well known [17].

If a k9t low-wave-number tail of the energy spectrum
is assumed in the analysis of Sec. II, the simplifications
that render the analysis tractable are no longer valid.
We use the linear-eddy model to investigate this case.
Though the validity of the model for this purpose is not
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conclusively established, the agreement of the linear-eddy
simulations of Sec. III with the analytical predictions of
Sec. II indicates that the low-wave-number properties of
the model are at least plausible.

A given energy spectrum is emulated within the model
by a suitable choice of the size-versus-frequency distri-
bution f(l) of mapping intervals. It has been shown [4]
that the choice f(l) ~ {77 leads to an advection pro-
cess whose effective diffusivity (“eddy diffusivity”) as a
function of “eddy size” [ is k; ~ [479. In particular,
g = § corresponds to the inertial-range scaling x; ~ 14/3.
Inertial-range properties of a scalar advected according
to this prescription have been verified [4].

More generally, the usual dimensional analysis [17]
gives K; ~ [LE(I)]*/2, where E(l) denotes the turbulence
energy spectrum parametrized by I = 1/k. The choice
E(l) ~1=(4+1) corresponding to the case of interest here,
gives k; ~ 17%/2  and thus ¢ = (8 + d)/2.

Ostensibly, the dimensionality of realistic flows is d =
3. However, there is an important case for which the ap-
propriate choice is d = 1. That case is fully developed
turbulent pipe flow. Though the flow is three dimensional
at the scale of the pipe diameter, there is only one direc-
tion along which flow or scalar fluctuations of size much
greater than this can develop. Therefore, pipe flow is
effectively one dimensional with respect to its low-wave-
number properties.

To simulate the decay of scalar fluctuations in turbu-
lent pipe flow, we therefore take d = 1. The functional
form of f(l) used in the simulations is f(I) = A(I/lp)~%/?
for I > lg, where lo is an eddy-size cutoff. (The frequency
factor A is subsumed in the effective diffusivity . charac-
terizing the advection process; see Ref. [4].) The relation
L? = [13f(l)dl/ f1f(l)dl = 5] determines a character-
istic length scale L for this eddy distribution [21]. This
length scale is used to normalize plotted results.

This f(I) is not a quantitatively accurate representa-
tion of the eddy distribution for all I. Simulations using
this f(I) are intended to identify the qualitative effects of
a long-tailed eddy distribution, as may occur in turbulent
pipe flow, on the asymptotic scalings of the low-wave-
number scalar statistics. Figures 3 and 4 show spectra
obtained using this f(I), but with the model formulation
and parameter assignments chosen to be equivalent in all
other respects to the case plotted in Figs. 1 and 2.

The plots indicate that some but not all of the narrow
band results generalize to the pipe-flow case. Equation
(4) and the time dependence of Eq. (7) remain valid,
but the wave-number dependence of Eq. (7) no longer
applies. The imperfect collapse of the scaled spectra for
t = 5 and 10 indicates slow convergence to asymptotic
scalings; see Sec. V for further discussion.

This outcome reflects the following considerations.
The low-wave-number k2 regime develops in a time of
order 7,, where 7, is now the time scale of the small-l
(I = lp) events. The large-l events are irrelevant on this
time scale, so they do not affect the k? scaling. Eddy-
diffusivity effects are likewise small-l dominated because
Ky ~ 1479 ~ |=1/2 Therefore the diffusive cutoff in Eq.
(4) is unaffected. Eddy diffusivity governs the rate of
decay of the scalar-variance reservoir feeding the equilib-
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FIG. 3. Time evolution of the scalar power spectrum E(k)
obtained by linear-eddy simulation using the triplet-map rear-
rangement rule with a power-law distribution of interval sizes
l, as specified in the text. The characteristic length scale L
of this distribution is set equal to 2w, corresponding to wave
number k = 2w/L = 1. As in the case plotted in Fig. 1,
Pe=210 and the initial scalar field is sinusoidal. The period
is 2wlo/L, where Il = L/+/5 is the lower bound of the in-
terval-size distribution, and the initial scalar variance is %.
Curves (top to bottom) correspond to ¢ = 1, 5, and 10 (in
units of L?/k.). A line segment of slope k* indicates the

low-wave-number scaling.
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FIG. 4. Spectra of Fig. 3, replotted in the format of Fig.
2.
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rium regime, so the time decay of the level of the equi-
librium spectrum obeys the same scaling as the narrow
band case. The dynamics within the equilibrium range
are not intrinsically dominated by small eddies, so it is
plausible that the k dependence in Eq. (7) no longer
applies.

We do not attempt to interpret the linear-eddy result
for the k£ dependence in the equilibrium range for the
pipe-flow case. We view it as a model prediction whose
validity may be tested by means of a laboratory experi-
ment.

V. IMPLICATIONS FOR PIPE-FLOW MIXING

With regard to experimentation, it is of interest to
compare the results of Sec. IV to present-day understand-
ing of turbulent-pipe-flow mixing. In their classic paper
that verified the viscous-convective scalar spectral sub-
range predicted by Batchelor [22], Nye and Brodkey [23]
examined large-scale mixing properties in turbulent pipe
flow by measuring the axial decay of a quantity that, for
present purposes, is equivalent to scalar variance. Adopt-
ing a plug-flow picture of pipe flow, they interpreted the
axial decay in terms of Corrsin’s [24] theory of the time
decay of scalar variance in a stirred tank. In this formu-
lation, scalar and advection length scales are limited by a
fixed upper bound, leading (by dimensional analysis) to
exponential decay of scalar fluctuations. The measure-
ments by Nye and Brodkey suggest exponential decay at
a rate consistent with a length-scale bound on the order
of the pipe diameter. However, the axial range of their
measurements was not very large, and they found several
indications that initial transients had not fully relaxed.

The analysis of the narrow band case in Sec. II pre-
dicts t~(4+2)/2 decay of the low-wave-number contribu-
tion to scalar variance. That analysis omits molecular
diffusion effects, which are significant only at high wave
numbers. In the absence of molecular diffusion, the total
scalar variance is constant. The effect of nonzero molec-
ular diffusivity, however small, is to dissipate scalar vari-
ance cascading to high wave numbers, causing the total
scalar variance to be dominated by the low-wave-number
contribution [1]. Therefore the analysis implies ¢t~ (4+2)/2
decay of the total scalar variance for large but finite Pe.

Scalar-variance time histories obtained from the linear-
eddy simulations discussed in Secs. IIT and IV are plotted
in Fig. 5. For the narrow band case, the t=3/2 decay pre-
dicted for d = 1 is obtained. For the case that emulates
the pipe-flow configuration, the large-t asymptote is ap-
proached gradually [25]. The plot indicates t~2 decay for
t > 3. The mechanistic considerations of Sec. IV suggest
eventual relaxation to t~3/2 decay.

The physical mechanism underlying this slower-than-
exponential decay is the initial transfer of scalar spectral
intensity to low wave numbers, creating a reservoir of
large-scale fluctuations that are then slowly consumed
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FIG. 5. Scalar variance c'?> versus time t from the lin-
ear-eddy simulations corresponding to Fig. 1 (dashed) and
Fig. 3 (solid), with time scaled as in those figures. A line seg-
ment of slope ¢t ~3/2 indicates the predicted asymptotic scaling.

by the eddy-diffusion mechanism. In the pipe-flow con-
text, this picture indicates the essential role of fluctua-
tions on length scales much larger than the pipe diameter.
Thus we propose that the plug-flow picture of turbulent
pipe flow (i.e., the representation of the pipe flow as a
stirred tank moving axially at the mean flow velocity)
omits the rate-limiting factor determining the far-field
decay of scalar variance.

It would be interesting to redo the Nye and Brod-
key experiment with technologies now available to mea-
sure scalar concentrations over a much wider dynamic
range than was possible in the original experiment. This
would permit measurements far enough downstream to
obtain a definitive test of the present predictions versus
the Corrsin theory. The spectral scalings as well as the
variance decay law should be testable. Because the low-
wave-number components of the scalar field determine
both properties, high spatial resolution is not required.
This should be helpful in obtaining a signal-to-noise ratio
sufficient to detect small-amplitude concentration fluctu-
ations.
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